Plasmonic hot spots: nanogap enhancement vs. focusing effects from surrounding nanoparticles.
نویسندگان
چکیده
Thin Au films (~5 nm) are known to form island-like structures with small gaps between the islands, which produce intense electric field "hot spots" under visible illumination. In this work, we perform finite difference time domain (FDTD) simulations based on experimentally observed high resolution transmission electron microscope (HRTEM) images of these films in order to study the nature of the "hot spots" in more detail. Specifically, we study the dependence of the electric field intensity in the hot spots on the surrounding film environment and on the size of the nanogaps. From our simulations, we show that the surrounding film contributes significantly to the electric field intensity at the hot spot by focusing energy to it. Widening of the gap size causes a decrease in the intensity at the hot spot. However, these island-like nanoparticle hot spots are far less sensitive to gap size than nanoparticle dimer geometries, studied previously. In fact, the main factor in determining the hot spot intensity is the focusing effect of the surrounding nano-islands. We show that these random Au island films outperform more sophisticated geometries of spherical nanoparticle clusters that have been optimized using an iterative optimization algorithm.
منابع مشابه
Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots
The plasmonic resonances of nanostructured silver films produce exceptional surface enhancement, enabling reproducible single-molecule Raman scattering measurements. Supporting a broad range of plasmonic resonances, these disordered systems are difficult to investigate with conventional far-field spectroscopy. Here, we use nonlinear excitation spectroscopy and polarization anisotropy of single ...
متن کاملNanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers.
In the field of plasmonics, the nanogap effect is often related to one aspect like the near-field enhancement at a single excitation wavelength or the far-field resonance shift. In this study, taking full advantage of finite element method (FEM) calculations, we present a comprehensive and quantitative analysis of the nanogap effect on the plasmonic behaviors of metallic nanoparticle dimers. Fi...
متن کاملPhotonic Crystal Hydrogel Enhanced Plasmonic Staining for Multiplexed Protein Analysis.
Plasmonic nanoparticles are commonly used as optical transducers in sensing applications. The optical signals resulting from the interaction of analytes and plamsonic nanoparticles are influenced by surrounding physical structures where the nanoparticles are located. This paper proposes inverse opal photonic crystal hydrogel as 3D structure to improve Raman signals from plasmonic staining. By h...
متن کاملHighly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal.
Although it is now well recognized that plasmonic gold/silver nanoparticle based aggregates having electromagnetic hot spots are responsible for high sensitivity in surface-enhanced Raman spectroscopy (SERS), the high yield and reproducible production of such nanostructures are challenging and limit their practical application. Here we show a graphene oxide (GO) based approach in generating sta...
متن کاملSurface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures.
DNA origami is a novel self-assembly technique allowing one to form various two-dimensional shapes and position matter with nanometer accuracy. We use DNA origami templates to engineer surface-enhanced Raman scattering substrates. Specifically, gold nanoparticles were selectively placed on the corners of rectangular origami and subsequently enlarged via solution-based metal deposition. The resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 20 13 شماره
صفحات -
تاریخ انتشار 2012